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J. Fry9, E. Gabathuler9, R. Gamet9, D. Garreta14, H.-J. Gerber17, A. Go14, A. Haselden9, P.J. Hayman9,
F. Henry-Couannier11, R.W. Hollander6, E. Hubert11, K. Jon-And15, P.-R. Kettle13, P. Kokkas4, R. Kreuger6,13,
R. Le Gac11, F. Leimgruber2, A. Liolios16, M.P. Locher18, E. Machado5, I. Mandić10, N. Manthos8, G. Marel14,
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Abstract. We study ππ correlations in the exclusive reaction p̄p → 2π+2π− at rest measured by the
CPLEAR experiment. Avoiding the introduction of an arbitrary reference sample, we analyse differential
distributions for equal charge pion pairs removing the phase-space factor event by event. A peak at small
relative momenta is most pronounced for large total momentum of the pair. The physical implications of
bosonic symmetrization for the properties of the pion source, in particular its radius, are briefly discussed.
The two extremes considered are the chaotic Hanbury-Brown–Twiss mechanism and the coherent Skyrmion
model.

1 Introduction

Any emission amplitude for identical bosons must be sym-
metrized. In particular, observable effects can be expected
for a pair of pions if their momenta become equal, i.e. for
vanishing relative momentum. Bose–Einstein (BE) corre-
lations is the name often assigned to a very specific dy-

namic picture – the Hanbury-Brown–Twiss (HBT) mech-
anism [1] – linking the two-pion correlation function at
small relative momentum to the space-time properties of
the pion emitting source, in particular its size [2–4].

The goal of this paper is to study the pion correlations
in nucleon–antinucleon annihilation at rest where inter-
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esting deviations from the stochastic HBT picture of the
BE correlations have been observed [5–10]. In the present
paper we concentrate on the pion correlations from the ex-
clusive annihilation channel 2π+2π−. The main results of
this paper are independent of any model assumptions. In
particular, we do not rely on the ratio of correlation func-
tions for pion pairs with equal and unequal signs which
often have been used in the literature [5,7–9,11,12], nor
do we construct any other reference samples which are
known to be a source of ambiguities [13–19]. The con-
straints originating from energy-momentum conservation
in nucleon–antinucleon annihilation at rest are very strong
and we shall show that they considerably distort the com-
monly used correlation functions.

Removing the phase-space factor, event by event, we
determine directly for the first time the square of the am-
plitude for pion-pair emission and the corresponding cor-
relation functions. Our results for the differential distribu-
tions confirm that equal charge two-pion correlations do
indeed peak at small relative momenta.

In Sect. 2 we describe the analysis of the single-variable
correlation function to make a connection with previous
analyses. In Sect. 3 we present detailed results for the dou-
ble differential distributions, systematically varying the
kinematical conditions. Section 4 contains a brief discus-
sion of the underlying physics in relation to earlier studies
and alternative mechanisms for pion emission.

2 Analysis of the 2π+2π− data

The reaction p̄p → 2π+2π− at rest in the CPLEAR ex-
periment proceeds from S- and P -wave atomic states [20].
The corresponding pion distribution for the final state con-
figuration {pi}, i = 1, 2, 3, 4, has the form

dσ({pi}) ∼ |T (k, {pi})|2k→0
dΦ4(p, p1, p2, p3, p4) . (1)

Here T (k, {pi}) is the amplitude of the p̄p → 2π+2π− an-
nihilation from the initial p̄p state with relative momen-
tum k, dΦ4(p, p1, p2, p3, p4) is the four-particle relativistic
phase space, and the limit k → 0 implies the incoherent
addition of the S- and P -wave annihilation occurring in
the experiment. The four-vectors in (1) are pi = (Ei,pi),
and p = (2mp, 0), the total four-momentum for p̄p an-
nihilation at rest. The notation implies a sum over initial
spin states, and all quantum numbers specifying the initial
spin state are suppressed. In this paper we shall determine
|T (k, {pi})| for each event directly.

2.1 Event selection

The CPLEAR detector [21] is cylindrically symmetric and
placed inside a solenoidal magnet of 3.6 m length and 2
m diameter, with a field of 0.44 T. Antiprotons of 200
MeV/c momentum, provided by LEAR, stop and annihi-
late at the centre of the detector, in a spherical target of
7 cm radius filled with gaseous hydrogen at 16 bar. Track-
ing is provided by two layers of proportional chambers, six

layers of drift chambers, and two layers of streamer tubes.
Outside the tracking devices there are 32 sectors of Scintil-
lator (S1) – Cherenkov (C) – Scintillator (S2) sandwiches
providing particle identification. The outermost detector
is an 18-layer gas-sampling electromagnetic calorimeter.

The data analysed here represent a small fraction of
the CPLEAR data and were collected with the so-called
minimum-bias trigger in 1993 and 1994 1. This trigger re-
quires a hit in the scintillator S1 in coincidence with the
incoming antiproton and accepts events in the entire phase
space, limited only by the energy thresholds and geometri-
cal acceptances. From the total of about 5.5·107 minimum-
bias events, well balanced between opposite magnetic-field
polarity settings, 107 four-prong events were selected ac-
cording to the following criteria:

1. four tracks balanced in charge;
2. good quality of track reconstruction (minimal number

of tracking hits, good χ2 for the track fit) and the ver-
tex coordinates of all track pairs are inside the target
sphere.

To select exclusively the events of the 2π+2π− channel,
kinematical and topological cuts were applied:

1. the 4π invariant mass m4π, measured with a resolution
of σ(m4π) = 0.05 GeV, is required to be consistent
with 2mp (|m4π − 2mp| < 0.08 GeV) and the missing
energy to be very small (less than the π0 mass);

2. the momentum of each track (pion) must be in the
range 0.06 ≤ pπ ≤ 0.92 GeV/c;

3. an opening angle ≥ 60 mrad between any two charged
tracks is required to avoid pion pairs with insufficient
two-track resolution and lepton pairs from γ conver-
sion and π0 Dalitz decays.

A total of 4.2 · 105 2π+2π− events remained, charac-
terized by very little missing energy and negligible kaon
contamination (a big advantage over many previous pion
correlation studies). With a single-track momentum reso-
lution of about 5%, a resolution of σ(M2) ≤ 0.005 GeV2

is achieved in the region of interest (low M2). A typical
bin width is 0.02 GeV2.

The measured pion momentum distributions for π+

and π− are plotted in Fig. 1. The perfect agreement be-
tween these two spectra shows that there are no system-
atic differences. The shape of the momentum distribution
is quite close to phase space which is also shown in Fig. 1.
The structure around 0.45 GeV is from ρρ events.

2.2 Correlation functions for inclusive distributions

One of the definitions of pion pair correlations is based on
the two-particle density in momentum space:

c(p1, p2) = ρ2(p1, p2)− ρ1(p1)ρ1(p2) , (2)
1 The data published earlier in [8] were collected in 1991 and

1992 with the same trigger
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Fig. 1. The measured single-pion momentum distribution
dNπ/d|pπ| for the 2π+2π− channel, values for π+ (•) and
π− (◦) are shown. The line is the phase-space distribution for
the 2π+2π− channel

where ρ2(p1, p2) is the two-particle inclusive density and
ρ1(p1) is the single-particle inclusive density. All observ-
ables not appearing explicitly are integrated out. The in-
clusive distributions are related to the differential cross-
sections:

ρ1(p1) = σ−1 dσ

d3p1/2E1
(3)

ρ2(p1, p2) = σ−1 dσ

d3p1/(2E1) d3p2/(2E2)
. (4)

Alternatively the two-particle correlations can be de-
scribed in terms of the ratio

C(p1, p2) =
ρ2(p1, p2)
ρ0(p1, p2)

, (5)

where ρ0(p1, p2) is the two-particle distribution in the ab-
sence of correlations, with various prescriptions being used
in the literature. One choice, consistent with (2), is the
product of the single-particle densities ρ0(p1, p2) =
ρ1(p1)ρ1(p2). Another choice of reference sample men-
tioned in the introduction is to take the two-particle inclu-
sive distribution for unlike pions: ρ0(p1, p2) = ρ+−

2 (p1, p2)
[5–8]. In this case some experimental uncertainties cancel
out in the ratio R2(p1, p2) = ρ

++|−−
2 (p1, p2)/ρ+−

2 (p1, p2).
However, the correlation function thus calculated is ex-
pected to be distorted by the different dynamics for par-
ticles of unlike charge [5, 22].

Averaging over angles and momenta, the correlation
functions can be expressed as a function of one parameter,
i.e. the two-pion invariant mass M :

C(M) =
ρ2(M)

(ρ1 · ρ1)(M)
(6)

ρ2(M) =
∫
δ(M −

√
(p1 + p2)2)ρ2(p1, p2)

× d3p1d
3p2

(2E1)(2E2)
(7)

(ρ1 · ρ1)(M) =
∫
δ(M −

√
(p1 + p2)2)ρ1(p1)ρ1(p2)

× d3p1d
3p2

(2E1)(2E2)
. (8)

The invariant mass M is uniquely related to the square of
the momentum difference:

(p1 − p2)2 = 4µ2 −M2 = −Q2, (9)

where µ is the pion mass and Q is the difference of the
three-momenta of the two pions in their centre-of-mass
system (CMS), therefore the variables M2 and Q2 are
equivalent.

Because of the total energy-momentum conservation,
the ratio C(M) is not a constant even if the distribu-
tions dσ/(d3p1/2E1) and dσ/(d3p1/2E1)(d3p2/2E2) are
determined by phase space alone. As long as the two par-
ticles carry a small fraction of the total energy, which is
a typical situation for high-energy collisions, these effects
are not significant. However, for the p̄p annihilation at
rest, the dependence of C(M) on M is significant even
for the pure phase-space distribution, as shown in Fig. 2
for the annihilation into four pions. It is clear that these
kinematical correlations must be removed from the corre-
lation function C(M) to study the dynamics of the pion
production.

2.3 Single-variable two-pion correlations

We present here the single-variable two-pion correlations
R2(M) and C(M) which have been frequently used in pre-
vious analyses. In order to isolate the correlation effects we
compare the experimental density with a four-pion phase-
space distribution corrected for experimental cuts and ef-
ficiencies in the same way as the data.

The data sample of 4.2 · 105 events was used to calcu-
late the two-particle distributions ρ2(M) defined by (7) for
pairs of identical pions, ρ++

2 (M) and ρ−−2 (M), and pairs
of unlike pions2, ρ+−

2 (M). The corresponding two-particle
density from the phase-space simulation is called ρPS2 (M).
In Figs. 3a and 3b we consider the ratios of distributions
for like- and unlike-pion pairs normalized to phase space,
ρ
++|−−|+−
2 (M)/ρPS2 (M), for which the kinematical corre-

lations discussed in Sect. 2.2 cancel. Figure 3c shows the
ratio of experimental two-particle distributions

R2(M) =
ρ
++|−−
2 (M)
ρ+−
2 (M)

. (10)

The results for R2(M) are consistent with those pre-
viously reported [8]. Comparing Figs. 3a and 3b one sees
that the peak in R2(M) is mostly due to the strong de-
pletion of the unequal charge distribution at small Q2

2 Here and below all distributions for unlike-pion pairs con-
tain multiple entries per event corresponding to all possible
π+π− combinations.
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Fig. 2. a The calculated invariant-mass distributions ρ2(M)
and (ρ1 ·ρ1)(M) and b the correlation function C(M) for p̄p →
4π at

√
s = 2mp, assuming a pure phase-space distribution.

The error bars shown are the statistical errors of the phase-
space integration

which is due to the presence of ρ mesons and other res-
onances, absent in the π+π+ and π−π− channels. It is
therefore dangerous to deduce model parameters from the
ratio R2(M), as has been discussed many times [4,9,22].

To study the correlation function C(M) in (6), the
two-particle distribution for uncorrelated pion pairs was
calculated using the event-mixing method. In this method
two particles are selected from two different events of the
experimental data set, the invariant mass of the pair is cal-
culated, and the corresponding distribution (ρ1 ·ρ1)(M) is
generated. The complete data sample was used in this pro-
cedure, i.e. no extra cuts were applied3. The experimental
distribution (ρ1 · ρ1)(M) normalized to phase space (see
below) is plotted in Fig. 3d. Separate (ρ1 ·ρ1)(M) distribu-
tions were analysed for ++, −−, and +− pion pairs and
all found to be consistent. We have checked that the direct
evaluation of (ρ1 · ρ1)(M) using the experimental single-
particle density ρ1(p) leads to consistent results. The ra-
tio shown in Fig. 3d is fairly flat at small Q2. The small
structure seen for Q2 < 0.2 GeV2 is not physical. Figures
4a and 4b show the correlation function C(M). In order
to account for the trivial M -dependence which arises be-

3 Note that the event mixing in the analysis of high-energy
collisions usually involves further selection criteria, see for ex-
ample [13].
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Fig. 3. Experimental two-particle distributions ρ2(M), (7),
divided by phase space ρPS2 (M) for a pairs of identical pions,
π+π+ (•) and π−π− (◦), and b pairs of unlike pions. c The
ratio R2 of the experimental two-particle distributions for like
and unlike pions: ρ++

2 (M)/ρ+−
2 (M) (•) and ρ−−2 (M)/ρ+−

2 (M)
(◦). d The ratio of the experimental distribution (ρ1 ·ρ1)(M)
to the phase-space distribution (ρ1 · ρ1)PS(M)

cause of to the energy-momentum conservation for the
pure phase-space distribution (see Fig. 2) and from the
experimental cuts, the following double ratios were calcu-
lated (see Figs. 4c and 4d):

C++|−−|+−(M)
CPS(M)

=
ρ
++|−−|+−
2 (M)
(ρ1 · ρ1)(M)

:
ρPS2 (M)

(ρ1 · ρ1)PS(M)
.

(11)

Note that the distributions for like and unlike pairs
in Figs. 4c and 4d look similar to the corresponding dis-
tributions shown in Figs. 3a and 3b except for normaliza-
tion. The like-sign correlation function in Fig. 4c shows a
weak peaking at small Q2, but the signal is not strong
enough for a meaningful analysis. We shall show in the
next section that the weakness of the signal is due to the
integration over the mass of the second pion pair in phase
space.
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Fig. 4. The experimental correlation function C(M), (6),
vs. the square of the invariant mass of two particles M2:
a ρ++

2 (M)/(ρ1 · ρ1)(M) (•) and ρ−−2 (M)/(ρ1 · ρ1)(M) (◦), b
ρ+−
2 (M)/(ρ1 · ρ1)(M) (2). The lines in a and b show the cor-

responding phase-space ratio ρPS2 (M)/(ρ1 ·ρ1)PS(M). The ex-
perimental correlation functions normalized to the phase-space
distribution, C(M)/CPS(M), are shown in c for π+π+ (•) and
π−π− (◦), and in d for π+π−

3 Differential two-pion correlations

So far we presented results for the inclusive correlation
function C++|−−(M)/CPS(M) where all kinematical
variables except M have been integrated out. The cor-
relation signal can be isolated by considering a double dif-
ferential density. We introduce the two-pion subsystems a
and b with four-momenta pa = (p1+p2) and pb = (p3+p4)
and invariant masses Ma and Mb. Integrating over the an-
gles specifying the relative orientation of the momenta in
the final state we define the double differential cross sec-
tion:

dσ

dM2
adM

2
b

∼W (s,Ma,Mb)

×
∫
|T (k, {pi})|2k→0

dΩabdΩ12dΩ34 (12)

Ma
2   (GeV2)

M
b2    

(G
eV

2 )
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Fig. 5. The physical region in the (M2
a ,M

2
b ) plane for the

reaction p̄p → 4π at
√
s = 2mp. The contour plot shows the

values of P 2
ab in GeV2

where the factor W (s,Ma,Mb) is given by

W (s,Ma,Mb) =
Pab√
s

√(
1− 4µ2

M2
a

)(
1− 4µ2

M2
b

)
, (13)

Pab =

√
(s− (Ma +Mb)2))(s− (Ma −Mb)2)

4s
. (14)

Here Pab is the relative three-momentum of the two-pion
pairs. Removing the phase-space factor W (s,Ma,Mb) we
define the double differential density:

%(Ma,Mb) =
1

W (s,Ma,Mb)
dσ

dM2
adM

2
b

(15)

∼
∫
|T ({pi})|2dΩabdΩ12dΩ34 . (16)

Note that the pair of variables (Ma,Mb) can be re-
placed by (Q,Pab), where the Q of (9) is twice the rela-
tive three-momentum between the pions 1 and 2 in their
centre-of-mass system and the relative momentum Pab is
equal to the total momentum, Pab = |p1+p2|, in the over-
all CMS. Note also that, contrary to ρ2(Ma) ∼ dσ/dMa

of Eq.(7), the differential density %(Ma,Mb) is a constant
if the relativistic phase-space approximation is valid, i.e.
if the matrix element T has no momentum dependence.

Figure 5 shows the physical region in the (M2
a ,M

2
b )

plane for the reaction p̄p → 4π at rest, with the contour
plot displaying the values of P 2

ab. The region of small Q2

where symmetrization effects are expected is in the lower
left corner.

Differential cross-sections and densities for equal-
charge pairs are shown in Fig. 6. There is a strong en-
hancement as both invariant masses approach threshold:
M2

++,M
2
−− → 4µ2. This peaking occurs for a large rela-

tive momentum Pab between the two-pion pairs.
The differential density %(M+−(a),M+−(b)) for the un-

like-pion pairs with the invariant masses M+−(a) and
M+−(b) is plotted in Fig. 7. Contrary to the case of the like-
pion pairs, there is no significant enhancement at small
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+− in this distribution. A characteristic feature of

%(M2
+−(a),M

2
+−(b)) is the strong signal from ρ mesons.

In order to check that the ρ mesons do not simulate
pion correlation signals for like-charge pion pairs at small
Q2 we show in Fig. 8 double differential densities for the
events where ρρ configurations are removed, %no ρρ(M++,
M−−), and for the events exclusively from ρρ configura-
tions, %only ρρ(M++,M−−). The ρ-meson pairs have been
defined by the following condition for the unlike-pion pairs
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Fig. 8. The differential densities a %only ρρ(M++,M−−) and
b %no ρρ(M++,M−−) for the events including only ρρ pairs (see
(17) and Fig. 7) and excluding all the ρρ pairs, respectively

a and b:

(M2
a −m2

ρ) + (M2
b −m2

ρ) < 2.2mρ Γρ , (17)

where mρ and Γρ are the mass and the width of the ρ
meson. The suppression of the ρρ events is made incoher-
ently; there are 1.34 ·105 events (46% of the total) outside
the ρρ region. As shown in Fig. 8a, the ρρ states do not
produce the enhancement at small M++ and M−−, which
is therefore not due to kinematical reflections from the ρρ
channel.

In order to verify that the enhancement in %(M++,
M−−) at M2

++,M
2
−− → 4µ2 is not produced by kinemati-

cal reflections from any other resonance channels we used
a Monte Carlo simulation for the following channels with
four pions in the final state: ρ0ρ0 → 2π+2π−, ρ0π+π− →
2π+2π−, a±2 π

∓ → ρ0π+π− → 2π+2π−, f2π
+π− →

2π+2π−. The events were generated with the CPLEAR
simulation program and subsequently passed through the
same analysis criteria as real data. The results are plot-
ted in Fig. 9 and show no significant enhancement in the
region of interest.

It is known that the resonant mechanisms ρ0π+π− →
2π+2π− and a±2 π

∓ → ρ0π+π− → 2π+2π− dominate the
S-wave p̄p annihilation at rest into 2π+2π− [25,26]. The
Monte Carlo results shown in Fig. 9 do not take the am-
plitude symmetrization into account. In order to investi-
gate possible effects of the symmetrization we performed
calculations using a properly symmetrized amplitude for
p̄p(3S1) → ρ0(π+π−)L=0 → 2π+2π−. A moderate en-
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Fig. 9. The differential density
%(M++,M−−) for the MC events cor-
responding to the resonance channels:
a ρ0ρ0 → 2π+2π−, b ρ0π+π− → 2π+2π−,
c a±2 π

∓ → ρ0π+π− → 2π+2π−,
d f2π

+π− → 2π+2π−

hancement in the differential density %(M++,M−−) was
found for this mechanism at small values of M++ and
M−−. This enhancement, however, is significantly smaller
than the one seen in the experimental data. The ampli-
tude corresponding to the a±2 π

∓ → ρ0π+π− → 2π+2π−
mechanism was found to be small for small values of M++
and M−−.

For the further discussion in Sect. 4 we construct the
following partial projections of the two-particle density.
The two-dimensional space (M2

++,M
2
−−) is divided into

slices M2
i ≤ M2

−−|++ < M2
i+1 and the projections of

%(M++,M−−) are defined by

%i(M++|−−) =
∫ M2

i+1

M2
i

%(M++,M−−)
%PS(Ma,Mb)

dM2
−−|++ . (18)

The differential density %PS(Ma,Mb) is calculated using
the four-pion phase-space sample with the experimental
cuts, where the pure phase-space distribution without
these cuts would be a constant. The projections %i(M++)
are shown in Fig. 10. For small values of M−−, the peak
in the projections %i(M++) at M2

++ → 4µ2 is strongly en-
hanced in comparison with the inclusive correlation func-
tion in Fig. 4c.

4 Discussion

One of the original motivations for studying pion pair cor-
relations in annihilation at rest and in high-energy reac-
tions is the HBT model [1], which was originally developed
for light emission from a star. When applied to pion pro-
duction [2,4] it is assumed that pions are emitted from a
finite-size source with a random phase at each emitting
point. The chaoticity of the phase is critical for the stan-
dard argument [2,4], leading to the HBT enhancement of
pion pair emission near Q2 = 0. The slope of the corre-
lation function is linked to the source radius R, and the
relative strength of the peak λ reflects the phase chaoticity
(λ = 0 for coherent pion emission, λ = 1 for fully inco-
herent emission). Since in proton–antiproton annihilation
the signal in C(M) is weak, we restrict the analysis to the
partially projected distributions %i(M), using a Gaussian
parametrization for each slice i,

%i(M) = Ni(1 + λi exp (−R2
iQ

2)) . (19)

The values of R and λ resulting from fitting the projec-
tions in Fig. 10 are shown in Table 1. The fit was per-
formed for both π+π+ and π−π− correlations, and the
results are consistent within the error bars. Shown also
are the fits where the events from the kinematical region
of the ρρ pairs are excluded from the data completely.
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Fig. 10. The projections %i(M++) of
%(M++,M−−) for different intervals of M2

−−
as indicated in the figure. The plots on the
left correspond to Fig. 6a (all events) and the
plots on the right to Fig. 8b (ρρ excluded). The
lines correspond to the fit in Table 1

The value for the source size R depends rather weakly
on the projection for M2

−− < 0.6 GeV2 which is a rea-
sonable cut-off. The strength λ decreases with increasing
M2
−− since the correlation signal in %i(M++) is strongest

for the projection corresponding to the lowest range of
M−−. As mentioned earlier, this enhancement occurs at a
large relative momentum Pab between the two-pion pairs.

It is natural to obtain the largest effect for a situ-
ation where the space resolution P−1

ab is able to resolve
the source radius R. In order to resolve a source of size
R ≈ 0.5 fm we expect that each pion in the pair should
have momentum q > 1/R ≈ 0.4 GeV. This corresponds
to Pab ≈ 2q > 0.8 GeV, i.e. only a small corner of the
(M2

++,M
2
−−) plane is suitable for this purpose. However,

our result shows that in this favourable kinematical re-
gion the strength λ ≈ 4, while for the conventional HBT
correlation one expects 0 ≤ λ ≤ 1. Problems with the
strength parameter λ for p̄p annihilation at rest in the
HBT framework have been noted earlier [5–10]. Our re-
sults for the differential density cast further doubts on a
naive interpretation based on the HBT mechanism.

The size of the pion emission source given in Table 1
is smaller than other determinations for p̄p annihilation
at rest [5–10]. In particular, the single Gaussian fit [6]
gives R ≈ 0.8 fm, and the double Gaussian fit [7,8] gives
two radii: R1 ≈ (0.7 − 1.0) fm and R2 ≈ (1.7 − 2.4) fm.
The main reason is that the double differential density

in (15) used here allows the pion emission source to be
probed with variable and controlled resolution determined
by the total momentum of the pion pair. The previous
determinations for the p̄p annihilation at rest were based
on integrated distributions which included pion pairs with
insufficient total momentum to resolve the small size of the
source. Note also that in [5–8] the radii were determined
from the ratio R2(M).

While the HBT model leads to peaking at small Q2,
the statement cannot be reversed, as has been noted re-
peatedly in the literature [4,9]. In fact an enhancement of
the correlation function nearQ2 = 0 can be obtained with-
out requiring chaoticity or thermodynamic elements in the
annihilation mechanism. One example is the Skyrmion-
inspired ansatz of [23]. The basic annihilation process is
assumed to be very fast and entirely coherent. Translat-
ing the findings of [24] into the notation used here for the
annihilation into four pions, a peak is predicted for C(M)
near Q2 = 0 which results from averaging over angles
and the momentum Pab. To achieve the required destruc-
tive oscillations Pab has to be large. This is exactly as
observed in Fig. 10, since the slices with a smaller value
of Mb = M−− correspond to larger Pab. Again the ob-
servation of the peaking and its kinematic properties are
not sufficient proof of the correctness of the underlying
dynamic model. On the other hand the slope of the corre-
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Table 1. The radius R and the strength λ of the π+π+ and π−π−

correlations obtained from a fit of the partially projected distributions
%i(M) to Gaussian shape, (19). The mass interval for the first pion pair
is indicated in the table; the fit was performed in the mass interval for
the second pair 4µ2 ≤M2 ≤ 0.8 GeV2

π+π+ correlations
M2
−− interval R λ N χ2/NDF
(GeV2) (fm)

all events
(0.1, 0.2) 0.38± 0.02 3.7± 0.5 1.07± 0.13 14.0/11
(0.2, 0.3) 0.30± 0.01 4.0± 0.6 0.67± 0.08 12.1/11
(0.3, 0.4) 0.28± 0.01 3.1± 0.5 0.66± 0.08 8.9/11
(0.4, 0.5) 0.36± 0.03 1.1± 0.1 1.08± 0.07 6.2/11
(0.5, 0.6) 0.33± 0.04 0.7± 0.1 1.07± 0.08 11.9/11

ρρ excluded
(0.1, 0.2) 0.39± 0.02 8.4± 1.2 0.57± 0.01 10.0/11
(0.2, 0.3) 0.40± 0.02 4.3± 0.5 0.68± 0.02 8.7/11
(0.3, 0.4) 0.46± 0.02 2.2± 0.1 0.88± 0.01 6.2/11
(0.4, 0.5) 0.56± 0.04 1.1± 0.1 1.01± 0.01 10.6/11
(0.5, 0.6) 0.68± 0.17 0.43± 0.20 1.04± 0.04 8.1/11

π−π− correlations
M2

++ interval R λ N χ2/NDF
(GeV2) (fm)

all events
(0.1, 0.2) 0.40± 0.02 3.5± 0.2 1.14± 0.08 23.3/11
(0.2, 0.3) 0.32± 0.02 3.5± 0.6 0.78± 0.10 8.2/11
(0.3, 0.4) 0.33± 0.02 2.0± 0.2 0.92± 0.08 12.8/11
(0.4, 0.5) 0.33± 0.03 1.4± 0.2 0.96± 0.08 5.5/11
(0.5, 0.6) 0.37± 0.04 0.87± 0.08 1.10± 0.06 6.8/11

ρρ excluded
(0.1, 0.2) 0.41± 0.01 7.8± 0.8 0.62± 0.07 19.0/11
(0.2, 0.3) 0.42± 0.02 4.0± 0.3 0.76± 0.05 2.4/11
(0.3, 0.4) 0.52± 0.02 2.2± 0.1 0.96± 0.03 9.1/11
(0.4, 0.5) 0.56± 0.04 1.4± 0.1 0.99± 0.02 5.0/11
(0.5, 0.6) 0.66± 0.09 0.62± 0.15 1.03± 0.02 3.8/11

lation peak near Q2 = 0 is related to the spatial extension
of the pion source in the Skyrmion model as well.

5 Conclusion

For p̄p → 2π+2π− at rest we have established that the
like-sign pion pairs are correlated at small relative momen-
tum (or small invariant mass). In the exclusive 2π+2π−
channel considered here the phase-space factor is elimi-
nated event by event for the double differential invariant-
mass distributions. The double differential density
%(M++,M−−) thus constructed shows a very clear en-
hancement at small values of M++ or M−−. It is defi-
nitely not due to the presence of any resonances in the
π+π− channel. At the same time the signal is fairly weak
for the single-variable correlation function C(M) because
of the integration over all phase space available for the
second pion pair.

The interpretation of the observed correlation signal by
a conventional stochastic HBT mechanism remains ques-
tionable. While the present results do not allow us to con-

clusively discriminate between different correlation mech-
anisms, further analysis of correlation functions beyond
single-variable inclusive distributions may be useful for
this purpose.

A similar study of the exclusive reaction p̄p →
2π+2π−π0 is under way. The preliminary results are simi-
lar to those of the 4π annihilation channel discussed here.
It would be interesting to do a similar analysis for the
annihilation into four and five neutral pions.
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